News 1

Bonjour,Veuillez trouver ci-joint la fiche analytique de la convention citée en objet concernant l’étude intitulée: « INSCOOP: Intégration de Nanofils III-V sur SOI pour COnnections Optiques sur Puce » dont Monsieur Michel assume la responsabilité scientifique.Ce contrat étant géré à l’avancement, nous vous mettons donc en place les crédits en avance, indépendamment des versements de l’ANR et selon vos besoins. De ce fait, vous voudrez bien compléter cette fiche analytique de vos prévisions de dépenses réelles (cellules vertes) pour chaque année civile du contrat et me la retourner par mail.
J’attire votre attention sur le fait que ces prévisions restent modulables en cours d’année et qu’il ne reste que 15 jours de dépenses possibles avant la fin de l’année 2011.

Les crédits non consommés au 31 Décembre de l’année en cours sont automatiquement reportés sur l’année suivante.

Toutefois, le contrat ayant commencé le 01/10/2011, si vous avez déjà effectué des opérations hors OTP (mais uniquement en Ressources Propres) qui concernent cette recherche, merci de bien vouloir me transmettre en même temps que la fiche analytique, les factures concernées qui seront incluses dans les justificatifs futurs et qui feront l’objet d’un transfert de crédits de l’OTP vers le banalisé.

Le bureau des contrats de recherche reste à votre disposition pour tout renseignement complémentaire.

Bien cordialement,

Adeline BROCHET 

Bureau des contrats de Recherche
CNRS Rhône-Auvergne
2 Av. Albert Einstein BP 61335
Tél :
Fax :

Related bibliography


1- A. C. Scofield et al, Nanoletters, 11, 2042, 2011

2- D. Huffaker et al, IPRM 2011

3- A. C. Scofield et al, Nanoletters 2011 (Bottom-up Photonic Crystal Lasers)


T2 task

1- M. Mattila et al, Appl. Phys. Lett., 89, 063119, 2006

2- M. Mattila et al, Appl. Phys. Lett., 90, 033101, 2007

3- D. Forbes et al, J. Crystal. Growth, 312, 1391, 2010

4- A. Foncuberta et al, Appl. Phys. Lett., 92, 063112, 2008

5- B. Mandl et al, Nanoletters, 10, 4443, 2010

6- J. Cheng et al, J. Cryst. Growth, 311, 1042, 2009


T3 task



T4 task



T5 task



T6 task



INSCOOP publications

11- C. Hajlaoui, L. Pedesseau, F. Raouafi, F. Ben CheikhLarbi, J. Even, J.M. Jancu, First-principles density functional theory study of strained wurzite InP and InAs, J. of Physics D: Appl. Phys., 46, 505106 (2013).

10- F. Glas et al., Predictive modeling of self-catalyzed III-V nanowire growth, Phys. Rev. B, B 88, 195304 (2013).

9- R. Anufrief, N. Chauvin, H. Khmissi, K. Naji, J.B. Barakat, J. Penuelas, G. Patriarche, M. Gendry, C. Bru-Chevallier, Polarization properties of single and ensembles of InAs/InP quantum rod nanowires emitting in the telecom wavelengths, J. Appl. Phys., 113, 193101 (2013).

8- K. Naji, G. Saint-Girons, J. Penuelas, G. Patriarche, L. Largeau, H. Dumont, P. Rojo Romeo, M. Gendry, Influence of the catalyst droplet diameter on the growth direction of InP nanowires grown on Si(001) substrate, Applied Physics Letters ,102, 243113 (2013).

7- M.H. Hadj Alouane, N. Chauvin, H. Khmissi, K. Naji, B. Ilahi, H. Maaref, G. Patriarche, M. Gendry, C. Bru-Chevallier, Excitonic properties of wurtzite InP nanowires grown on silicon substrate, Nanotechnology 24, 035704 (2013).

6- K. Naji, H. Dumont, G. Saint-Girons, J. Penuelas, G. Patriarche, M. Hocevar, V. Zwiller, M. Gendry, Growth of vertical and defect free InP nanowires on SrTiO3(001) substrate and comparison with growth on silicon, Journal of Crystal Growth 343, 101-104 (2012).

5- N. Chauvin, M.H. Hadj Alouane, R. Anufriev, H. Khmissi, K. Naji, G. Patriarche, C. Bru-Chevallier, M. Gendry, Growth temperature dependence of exciton lifetime in wurtzite InP nanowires grown on silicon substrates, Applied Physics Letters 100, 011906 (2012).

4- R. Anufriev, N. Chauvin, H. Khmissi, K. Naji, M. Gendry, C. Bru-Chevallier, Impact of substrate-induced strain and surface effects on the optical properties of InP nanowires,
Applied Physics Letters 101, 072101 (2012).

3- H. Khmissi, K. Naji, M.H. Hadj Alouane, N. Chauvin, C. Bru-Chevallier, B. Ilahi, G. Patriarche, M. Gendry, InAs/InP nanowires grown by catalyst assisted molecular beam epitaxy on silicon substrates, Journal of Crystal Growth 344, 45-50 (2012).

2- J. Even, L. Pedesseau, C. Hajlaoui, C. Katan and J-M. Jancu, Non-linear electro-elastic coupling in non-centrosymmetric materials, Journal of Physics: Conference Series (2012).

1- M H. Hadj Alouane, R. Anufriev, N. Chauvin, H. Khmissi, K. Naji, B. Ilahi, H. Maaref,      G. Patriarche, M. Gendry and C. Bru-Chevallier, Nanotechnology, 22, 405702 (2011).

Presentation and objective

ANR-Programme Nanotechnologies et Nanosystèmes – P2N – 2011

n°: ANR-11-NANO-012


Titre: Intégration de Nanofils III-V sur SOI pour COnnections Optiques sur Puce

Title: III-V nanowires integration on SOI for on-chip optical connections


5 Partners:

1- INL-Institut des Nanotechnologies de Lyon, UMR 5270

2- LPN-Laboratoire de Photonique et de Nanostructures, UPR 20

3- CEA-Leti-DOPT

4- LTM-Laboratoire des Technologies de la Microélectronique, UMR 5129

5- FOTON-INSA de Rennes



Coordinator: M. Gendry-INL for task T1 « Project management »

A scientific/technical manager will be indicated for the 5 scientific tasks of the project:

M. Gendry-INL for task T2: NW nucleation and orientation

J.C. Harmand-LPN for task T3: Core-shell NWs

B. Salem-LTM for task T4: Substrate patterning and site-controlled catalyst on an SOI waveguide

JM. Jancou-FOTON for task T5: Characterization and modelling of NW properties (transversal task)

B. Ben Bakir-CEA for task T6: Coupling of NWs-based PhC resonator to an SOI waveguide




This project proposes an original strategy to integrate optical links on Si wafer for on-chip interconnects. The link consists of a Si optical waveguide fabricated from a SOI (Si on insulator) substrate. A compact optical source operating at 1.2 µm wavelength or above will be fabricated directly on the Si waveguide. This source is based on III-V materials deposited selectively on the Si surface in the form of vertical photonic wires standing on top of the waveguide. A regular array of such wires will form a resonant active photonic crystal. The project aims at demonstrating that under optical pumping, hybrid Bloch modes can be amplified in the III-V wire array and propagate in the passive Si waveguide.  This demonstration will pave the way to fully integrated photonic links on Si chips.

For the sake of compatibility with CMOS technology, we propose to fabricate this device with a monolithic approach which can be implemented with high yield at large scale and high density, conversely to wafer bonding techniques. The integration of III-V material is based on epitaxial growth of nanowires (NWs) by the catalyst-assisted vapor-liquid-solid (VLS) method. This approach is very efficient to obtain defect-free materials of high optical quality, despite the highly mismatched interface between III-V and Si. Regular arrays will be obtained by patterning a SiO2 mask with nano-sized openings containing the catalyst particles. Core-shell heterostructures will be formed to limit carrier surface recombination. We will focus on the InAsP/InP system which covers the targeted wavelengths for which Si is transparent. Core and shell will be formed with adequate dimensions in successive growth steps. The full compatibility with CMOS raises critical issues which are addressed in the project. Growth must be performed on (001) oriented Si surface and without Au as catalyst which is an impurity to be avoided in CMOS process lines. We rely on the experience of one partner as well as on the recent literature to investigate alternative catalysts. On (001) surfaces, VLS process results in inclined NWs growing along the <111> directions of the substrate. To get vertically standing NWs on Si(001), a very thin intermediate layer of SrTiO3 is proposed on the basis of preliminary results of one partner. These growth and patterning issues are addressed in tasks 2, 3 and 4 of the project.

The former activities will be supported by task 5 dealing with material structural and optical characterization and modeling. Modeling tools will be developed to optimize the VLS growth conditions. Of particular importance for the project, the conditions which stabilize the NW crystalline phase will be predicted for the self-catalytic case. Tight-binding and k.p models will be implemented to calculate the electronic properties of NWs with core-shell heterostructures of wurzite phase. These calculations, not yet available in the literature, will evaluate the excitonic and piezo-electric effects of major importance for the efficiency of the optical source.

Task 6 will be dedicated to the optimization and evaluation of the optical micro-source (resonant LED or lasers). Electromagnetic simulations will guide the design of the periodic array of III-V photonic NWs on Si. High quality factor resonances and efficient coupling between these micro-resonators and the SOI waveguide will be targeted. After the fabrication of the NW arrays, their planarization with a low-index insulating material will be tested. This technological step will anticipate a longer term objective (out of the scope of this project), i.e. electrically injected devices. The emission characteristics of the micro-source will be measured under optical pumping, with and without device planarization. This ultra-compact source of original architecture is expected to have enhanced global efficiency and reduced power consumption, which is of prime importance in the field of silicon photonics.